apparun.tree_node#

Classes#

NodeProperties

Properties of an impact model node. Can be used by to break the results down

NodeScores

Gathers all useful information to exploit computed node wise LCIA results.

Module Contents#

class apparun.tree_node.NodeProperties#

Bases: pydantic.BaseModel

Properties of an impact model node. Can be used by to break the results down according to life cycle phase, for exemple. Properties can be key/value (ex: {“phase”: “production”} or flags (ex: {production_phase: True}).

classmethod from_dict(properties: Dict[str, str | float | bool]) NodeProperties#

Construct using dict. :param properties: properties of the node. :return: constructed NodeProperties

get_property_value(property_name: str) str | bool | None#

Gives the value of a property by name, returns None if property doesn’t exist. :param property_name: name of the property to get value :return: value of the property, None if doesn’t exist

properties: Dict[str, str | float | bool]#
class apparun.tree_node.NodeScores#

Bases: pydantic.BaseModel

Gathers all useful information to exploit computed node wise LCIA results.

static combine_by_property(nodes_scores: List[NodeScores], property_name: str) List[NodeScores]#

Sum up (element wise) the scores of each node sharing the same property value, for each method. :param nodes_scores: node scores to combine according to property value. :param property_name: name of the property under consideration :return: list of newly created nodes. Name of the node will be the property value.

to_unpivoted_df() pandas.DataFrame#
lcia_scores: apparun.score.LCIAScores#

Computed LCIA scores, for each method.

name: str#

Node name/property value, if results have been combined by property value.

parent: str#

Name of parent node.

properties: NodeProperties#

Properties of the node.