apparun.score#
Classes#
Scores for each impact method. |
Module Contents#
- class apparun.score.LCIAScores#
Bases:
pydantic.BaseModelScores for each impact method.
- static sum(lcia_scores: List[LCIAScores]) LCIAScores#
Sum element-wise all scores for each method. :param lcia_scores: LCIA scores to sum up. :return: summed LCIA scores
- to_normalised(method: apparun.impact_methods.MethodUniqueScore | None = MethodUniqueScore.EF30, filenorm: str | None = None) LCIAScores#
Computes normalisation of LCIAScores using .csv file with impact categories and normalisation factors. :param: method: allows to use default MethodUniqueScore.EF30 or EF31 normalisation factors. :param: filenorm: allows to give a personal .csv file with normalisation factors. :return: LCIAScores after normalisation.
- to_unique_score(is_normalised: bool | None = False, is_weighted: bool | None = False, method: apparun.impact_methods.MethodUniqueScore | None = MethodUniqueScore.EF30, filenorm: str | None = None, fileweight: str | None = None) LCIAScores#
Computes sum of LCIAScores impact category scores into unique score. Possible to apply normalisation and/or weighting before aggregating scores. :param: is_normalised: if True, apply normalisation before sum into unique score. :param: is_weighted: if True, apply weighting (after normalisation) before sum into unique score. :param: method: allows to use default MethodUniqueScore.EF30 or EF31 normalisation and weighting factors. :param: filenorm: allows to give a personal .csv file with normalisation factors. :param: fileweight: allows to give a personal .csv file with weighting factors.
- to_unpivoted_df() pandas.DataFrame#
- to_weighted(method: apparun.impact_methods.MethodUniqueScore | None = MethodUniqueScore.EF30, fileweight: str | None = None) LCIAScores#
Computes normalisation of LCIAScores using .csv file with impact categories and normalisation factors. :param: method: allows to use default MethodUniqueScore.EF30 or EF31 weighting factors. :param: fileweight: allows to give a personal .csv file with weighting factors. :return: LCIAScores after normalisation.
- property method_names: Set[str]#
Get all LCIA methods assessed. :return: LCIA methods assessed
- scores: Dict[str, float | List[float]] | None#